The Origin of Mass

Elementary Particles and Fundamental Symmetries

Author: John Iliopoulos

Publisher: Oxford University Press

ISBN: 0192527541

Category: Science

Page: 176

View: 3198

The discovery of a new elementary particle at the Large Hadron Collider at CERN in 2012 made headlines in world media. Since we already know of a large number of elementary particles, why did this latest discovery generate so much excitement? This small book reveals that this particle provides the key to understanding one of the most extraordinary phenomena which occurred in the early Universe. It introduces the mechanism that made possible, within tiny fractions of a second after the Big Bang, the generation of massive particles. The Origin of Mass is a guided tour of cosmic evolution, from the Big Bang to the elementary particles we study in our accelerators today. The guiding principle of this book is a concept of symmetry which, in a profound and fascinating way, seems to determine the structure of the Universe.

Elementary Particle Physics

Concepts and Phenomena

Author: Otto Nachtmann

Publisher: Springer Science & Business Media

ISBN: 3642612814

Category: Science

Page: 559

View: 6966

This book grew-how could it be otherwise?-out of a series oflectures which the author held at the University of Heidelberg. The purpose ofthese lectures was to give an introduction to the phenomenology of elementary particles for students both of theoretical and experimental orientation. With the present book the author has set himself the same aim. The reader is assumed to be familiar with ordinary nonrelativistic quantum mechanics as presented, e.g., in the following books: Quantum Mechanics, by L.1. Schiff (McGraw-Hill, New York, 1955); Quantum Mechanics, Vol. I, by K. Gottfried (W.A. Benjamin, Reading, Ma., 1966). The setup of the present book is as follows. In the first part we present some basic general principles and concepts which are used in elementary particle physics. The reader is supposed to learn here the "language" of particle physics. An introductory chapter deals with special relativity, of such funda mental importance for particle physics, which most ofthe time is high energy, i.e., highly relativistic physics. Further chapters of this first part deal with the Dirac equation, with the theory of quantized fields, and with the general definitions of the scattering and transition matrices and the cross-sections.

Mass and Motion in General Relativity

Author: Luc Blanchet,Alessandro Spallicci,Bernard Whiting

Publisher: Springer Science & Business Media

ISBN: 9789048130153

Category: Science

Page: 626

View: 4036

From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.

Nuclear and Particle Physics

An Introduction

Author: Brian R. Martin

Publisher: John Wiley & Sons

ISBN: 111996511X

Category: Science

Page: 454

View: 1860

An accessible introduction to nuclear and particle physics with equal coverage of both topics, this text covers all the standard topics in particle and nuclear physics thoroughly and provides a few extras, including chapters on experimental methods; applications of nuclear physics including fission, fusion and biomedical applications; and unsolved problems for the future. It includes basic concepts and theory combined with current and future applications. An excellent resource for physics and astronomy undergraduates in higher-level courses, this text also serves well as a general reference for graduate studies.

Prime Symmetry and Particle Physics

Author: George Brewer

Publisher: Troubador Publishing Ltd

ISBN: 178803645X

Category: Mathematics

Page: 176

View: 4519

Is it possible to take a set of particle masses and then work backwards to find a hidden symmetry? Does the Higgs Boson have a partner particle and might that particle solve the mystery of dark matter? Can the tiny masses of neutrinos be predicted? Prime Symmetry and Particle Physics begins with the understanding that the constant π does not have to be measured in spacetime: it can be calculated from a set of real numbers. Former PhD student, George Brewer explores the idea that if this is true of π, why not of other constants? A standard model of physics predicts interactions between quantum fields when particles scatter, but 26 numbers, dimensionless constants for force strengths and the masses of elementary particles, still need to be put into that model. Brewer proposes that many of those constants can actually be calculated from a single equation and a set of integer parameters – a theory that he calls the prime symmetry model. Comparing a set of measured constants against their calculated counterparts provides good evidence for the model's validity. Brewer opens the door for readers to join a select group with information that theorists and experimentalists at the Large Hadron Collider (LHC) are yet to consider, offering them the opportunity to verify the model’s deceptively simple mathematics for themselves, simply by using an online scientific calculator. Inspired by Albert Einstein, Stephen Hawking and Sean Carroll, Prime Symmetry and Particle Physics is an essential read for all particle physics enthusiasts. The book will also appeal to readers interested in the Higgs boson events at the LHC.

The Scientific Legacy of Poincaré

Author: Éric Charpentier,Etienne Ghys,Annick Lesne

Publisher: American Mathematical Soc.

ISBN: 082184718X

Category: Mathematics

Page: 391

View: 9584

Henri Poincare (1854-1912) was one of the greatest scientists of his time, perhaps the last one to have mastered and expanded almost all areas in mathematics and theoretical physics. He created new mathematical branches, such as algebraic topology, dynamical systems, and automorphic functions, and he opened the way to complex analysis with several variables and to the modern approach to asymptotic expansions. He revolutionized celestial mechanics, discovering deterministic chaos. In physics, he is one of the fathers of special relativity, and his work in the philosophy of sciences is illuminating. For this book, about twenty world experts were asked to present one part of Poincare's extraordinary work. Each chapter treats one theme, presenting Poincare's approach, and achievements, along with examples of recent applications and some current prospects. Their contributions emphasize the power and modernity of the work of Poincare, an inexhaustible source of inspiration for researchers, as illustrated by the Fields Medal awarded in 2006 to Grigori Perelman for his proof of the Poincare conjecture stated a century before. This book can be read by anyone with a master's (even a bachelor's) degree in mathematics, or physics, or more generally by anyone who likes mathematical and physical ideas. Rather than presenting detailed proofs, the main ideas are explained, and a bibliography is provided for those who wish to understand the technical details.

RF Superconductivity

Volume II: Science, Technology and Applications

Author: Hasan Padamsee

Publisher: John Wiley & Sons

ISBN: 3527405720

Category: Technology & Engineering

Page: 448

View: 6169

This is the second book to RF Superconducting, written by one of the leading experts. The book provides fast and up-to-date access to the latest advances in the key technology for future accelerators. Experts as well as newcomers to the field will benefit from the discussion of progress in the basic science, technology as well as recent and forthcoming applications. Researchers in accelerator physics will also find much that is relevant to their discipline.

The Logic of Nature, Complexity and New Physics

From Quark-Gluon Plasma to Superstrings, Quantum Gravity and Beyond - Proceedings of the International School of Subnuclear Physics

Author: Antonino Zichichi

Publisher: World Scientific

ISBN: 9812832467

Category: Electronic books

Page: 688

View: 6317

From August 29 to September 7, 2006, a large group of distinguished lecturers and young physicists coming from various countries around the world met in Erice, Italy, at the Ettore Majorana Foundation and Centre for Scientific Culture (EMFCSC) for the 44th course of the International School of Subnuclear Physics: OC The Logic of Nature, Complexity and New Physics: From Quark-Gluon Plasma to Superstrings, Quantum Gravity and BeyondOCO.This book is a collection of lectures given during the course, covering the most recent advances in theoretical physics and the latest results from current experimental facilities. Following one of the aims of the School, which is to encourage and promote young physicists to achieve recognition at an international level, the students who have distinguished themselves for their excellence in research have been given the opportunity to publish their presentations in this volume.

Cairo International Conference on High Energy Physics (CICHEP II)

Author: Shaaban Khalil

Publisher: American Inst. of Physics

ISBN: 9780735403826

Category: Science

Page: 286

View: 5660

The Second Cairo International Conference on High Energy Physics (CICHEP II) was held at the German University in Cairo, Egypt from 14-17 January 2006. The purpose of the conference was to bring together specialized scientists in the field of High Energy Physics from universities and research institutes from all around the world to discuss current developments and new trends, results, and perspectives in this field.

Quantum Gravity

From Theory to Experimental Search

Author: Domenico J. W. Giulini,Claus Kiefer,Claus Lämmerzahl

Publisher: Springer Science & Business Media

ISBN: 9783540408109

Category: Science

Page: 402

View: 3303

The relation between quantum theory and the theory of gravitation remains one of the most outstanding unresolved issues of modern physics. According to general expectation, general relativity as well as quantum (field) theory in a fixed background spacetime cannot be fundamentally correct. Hence there should exist a broader theory comprising both in appropriate limits, i.e., quantum gravity. This book gives readers a comprehensive introduction accessible to interested non-experts to the main issues surrounding the search for quantum gravity. These issues relate to fundamental questions concerning the various formalisms of quantization; specific questions concerning concrete processes, like gravitational collapse or black-hole evaporation; and the all important question concerning the possibility of experimental tests of quantum-gravity effects.


The invention and discovery of the 'God Particle'

Author: Jim Baggott

Publisher: OUP Oxford

ISBN: 019165003X

Category: Science

Page: 304

View: 4830

The hunt for the Higgs particle has involved the biggest, most expensive experiment ever. So exactly what is this particle? Why does it matter so much? What does it tell us about the Universe? Did the discovery announced on 4 July 2012 finish the search? And was finding it really worth all the effort? The short answer is yes. The Higgs field is proposed as the way in which particles gain mass - a fundamental property of matter. It's the strongest indicator yet that the Standard Model of physics really does reflect the basic building blocks of our Universe. Little wonder the hunt and discovery of this new particle produced such intense media interest. Here, Jim Baggott explains the science behind the discovery, looking at how the concept of a Higgs field was invented, how the vast experiment was carried out, and its implications on our understanding of all mass in the Universe.

Compendium of Quantum Physics

Concepts, Experiments, History and Philosophy

Author: Daniel Greenberger,Klaus Hentschel,Friedel Weinert

Publisher: Springer Science & Business Media

ISBN: 9783540706267

Category: Science

Page: 901

View: 4238

With contributions by leading quantum physicists, philosophers and historians, this comprehensive A-to-Z of quantum physics provides a lucid understanding of key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional and new concepts, making it an indispensable resource for concise, up-to-date information about the many facets of quantum physics.

Elementary Particles and Their Interactions

Concepts and Phenomena

Author: Quang Ho-Kim,Xuan-Yem Pham

Publisher: Springer Science & Business Media

ISBN: 9783540636670

Category: Science

Page: 661

View: 8780

Elementary Particles and Their Interactions. Concepts and Phenomena presents a well-written and thorough introduction to this field at the advanced undergraduate and graduate level. Students familiar with quantum mechanics, special relativity and classical electrodynamics will find easy access to modern particle physics and a rich source of illustrative examples, figures, tables, and problems with selected solutions. Further references guide the reader through the literature. This text should become a standard reference to particle physics and will be useful to students and lecturers alike.

Origin of Symmetries

Author: C. D. Froggatt,H. B. Nielsen

Publisher: World Scientific

ISBN: 9789971966300

Category: Science

Page: 581

View: 6660

The development in our understanding of symmetry principles is reviewed. Many symmetries, such as charge conjugation, parity and strangeness, are no longer considered as fundamental but as natural consequences of a gauge field theory of strong and electromagnetic interactions. Other symmetries arise naturally from physical models in some limiting situation, such as for low energy or low mass. Random dynamics and attempts to explain all symmetries ? even Lorentz invariance and gauge invariance ? without appealing to any fundamental invariance of the laws of nature are discussed. A selection of original papers is reprinted.

Lectures on LHC Physics

Author: Tilman Plehn

Publisher: Springer

ISBN: 3319059424

Category: Science

Page: 327

View: 9674

With the discovery of the Higgs boson, the LHC experiments have closed the most important gap in our understanding of fundamental interactions, confirming that such interactions between elementary particles can be described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is a priori valid for arbitrarily high energy scales and does not require an ultraviolet completion. Yet, when trying to apply the concrete knowledge of quantum field theory to actual LHC physics - in particular to the Higgs sector and certain regimes of QCD - one inevitably encounters an intricate maze of phenomenological know-how, common lore and other, often historically developed intuitions about what works and what doesn’t. These lectures cover three aspects to help understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: they discuss the many facets of Higgs physics, which is at the core of this significantly expanded second edition; then QCD, to the degree relevant for LHC measurements; as well as further standard phenomenological background knowledge. They are intended to serve as a brief but sufficiently detailed primer on LHC physics to enable graduate students and all newcomers to the field to find their way through the more advanced literature, and to help those starting to work in this very timely and exciting field of research. Advanced readers will benefit from this course-based text for their own lectures and seminars. .

Jenseits der Nanowelt

Leptonen, Quarks und Eichbosonen

Author: Hans Günter Dosch

Publisher: Springer-Verlag

ISBN: 3540266739

Category: Science

Page: 296

View: 1488

Dies ist eine hervorragende Einführung in die Teilchenphysik und ebenso ein Repetitorium für Studenten im Prüfungssemester und für Lehrer an Gymnasien. Der Autor, der als Forscher wesentliche Entwicklungen der Teilchenphysik begleitet hat und der als herausragender Lehrer gilt, wählt die Geschichte der Teilchenphysik als roten Faden. Die Begriffe und die Theorien werden in großer Klarheit präsentiert, und die Experimente werden herangezogen, um Erfolg und Misserfolg auf dem Weg zum Standardmodell zu illustrieren. Der mathematische Apparat wird klein gehalten, so dass das Buch auch den interessierten Laien in seinen Bann ziehen wird.