Thirty-three Miniatures

Mathematical and Algorithmic Applications of Linear Algebra

Author: Jiří Matoušek

Publisher: American Mathematical Soc.

ISBN: 0821849778

Category: Mathematics

Page: 182

View: 5905

DOWNLOAD NOW »
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)

Polynomial Methods in Combinatorics

Author: Larry Guth

Publisher: American Mathematical Soc.

ISBN: 1470428903

Category: Combinatorial geometry

Page: 273

View: 6549

DOWNLOAD NOW »
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.

Challenges and Strategies in Teaching Linear Algebra

Author: Sepideh Stewart,Christine Andrews-Larson,Avi Berman,Michelle Zandieh

Publisher: Springer

ISBN: 3319668110

Category: Education

Page: 382

View: 3450

DOWNLOAD NOW »
This book originated from a Discussion Group (Teaching Linear Algebra) that was held at the 13th International Conference on Mathematics Education (ICME-13). The aim was to consider and highlight current efforts regarding research and instruction on teaching and learning linear algebra from around the world, and to spark new collaborations. As the outcome of the two-day discussion at ICME-13, this book focuses on the pedagogy of linear algebra with a particular emphasis on tasks that are productive for learning. The main themes addressed include: theoretical perspectives on the teaching and learning of linear algebra; empirical analyses related to learning particular content in linear algebra; the use of technology and dynamic geometry software; and pedagogical discussions of challenging linear algebra tasks. Drawing on the expertise of mathematics education researchers and research mathematicians with experience in teaching linear algebra, this book gathers work from nine countries: Austria, Germany, Israel, Ireland, Mexico, Slovenia, Turkey, the USA and Zimbabwe.

A Journey Through Discrete Mathematics

A Tribute to Jiří Matoušek

Author: Martin Loebl,Jaroslav Nešetřil,Robin Thomas

Publisher: Springer

ISBN: 3319444794

Category: Computers

Page: 810

View: 3676

DOWNLOAD NOW »
This collection of high-quality articles in the field of combinatorics, geometry, algebraic topology and theoretical computer science is a tribute to Jiří Matoušek, who passed away prematurely in March 2015. It is a collaborative effort by his colleagues and friends, who have paid particular attention to clarity of exposition – something Jirka would have approved of. The original research articles, surveys and expository articles, written by leading experts in their respective fields, map Jiří Matoušek’s numerous areas of mathematical interest.

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3658006153

Category: Mathematics

Page: 284

View: 3207

DOWNLOAD NOW »
Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie

Author: Jörg Bewersdorff

Publisher: Springer-Verlag

ISBN: 3658022620

Category: Mathematics

Page: 214

View: 5014

DOWNLOAD NOW »
Dieses Buch ist eine leicht verständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Der rote Faden ist eines der klassischen und fundamentalen Probleme der Algebra: Nachdem im 16. Jahrhundert allgemeine Lösungsformeln für Gleichungen dritten und vierten Grades gefunden wurden, schlugen entsprechende Bemühungen für Gleichungen fünften Grades fehl. Nach fast dreihundertjähriger Suche führte dies schließlich zur Begründung der so genannten Galois-Theorie: Mit ihrer Hilfe kann festgestellt werden, ob eine Gleichung mittels geschachtelter Wurzelausdrücke lösbar ist. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint. In dieser Auflage wurde ein Kapitel ergänzt, in dem ein alternativer, auf Emil Artin zurückgehender Beweis des Hauptsatzes der Galois-Theorie wiedergegeben wird. Dieses Kapitel kann fast unabhängig von den anderen Kapiteln gelesen werden.

Diskrete Mathematik

Eine Entdeckungsreise

Author: Jaroslav Nešetril

Publisher: Springer-Verlag

ISBN: 3662067560

Category: Mathematics

Page: 459

View: 5369

DOWNLOAD NOW »
Wozu hat eine Einführung in die diskrete Mathematik ein so langes Vorwort? Was wollen wir überhaupt sagen? Es gibt viele Wege zur diskreten Mathematik. Zunächst wollen wir Wegweiser aufstellen, denen wir beim Schreiben zu folgen versucht haben; der Leser mag dann über unseren Erfolg entscheiden. Außerdem geben wir einige eher technische Hinweise, wie man nach diesem Buch eine Vorlesung halten kann, zu den Übungsaufgaben, zur Literatur usw. Hier nun also einige Leitgedanken, die dieses Buch vielleicht von anderen mit ähnlichem Titel und Inhalt unterscheiden . • Mathematisches Denken entwickeln. Unser Hauptziel, wichti ger als das Vermitteln mathematischer Fakten, ist beim Studen ten Verständnis für mathematische Begriffe, Definitionen und Beweise zu wecken und ihn (oder sie!) zu befähigen, Proble me zu lösen, die mehr als nur Standardrezepte erfordern, sowie mathematische Gedanken präzise auszudrücken. Mathematische Denkgewohnheiten sind in vielen Lebensbereichen von Vorteil, z. B. beim Programmieren oder bei der Entwicklung komplexer 1 Anlagen. Viele private (gut zahlende) Firmen scheinen das zu wissen. Sie interessieren sich nicht wirklich dafür, ob der Bewer ber vollständige Induktion im Schlaf kann, aber sie wünschen sich, dass er gewohnt ist, sich komplexe Konzepte in kurzer Zeit anzueignen - mathematische Sätze sind dafür offenbar ein her vorragendes Training.

Operations Research

Einführung

Author: Frederick S. Hillier,Gerald J. Liebermann

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3486792083

Category: Business & Economics

Page: 868

View: 318

DOWNLOAD NOW »
Aus dem Inhalt: Was ist Operations Research? Überblick über die Modellierungsgrundsätze des Operations Research. Einführung in die lineare Programmierung. Die Lösung linearer Programmierungsprobleme: Das Simplexverfahren. Stochastische Prozesse. Warteschlangentheorie. Lagerhaltungstheorie. Prognoseverfahren. Markov-Entscheidungsprozesse. Reliabilität. Entscheidungstheorie. Die Theorie des Simplexverfahrens Qualitätstheorie und Sensitivitätsanalyse Spezialfälle linearer Programmierungsprobleme. Die Formulierung linearer Programmierungsmodelle und Goal-Programmierung. Weitere Algorithmen der linearen Programmierung. Netzwerkanalyse einschließlich PERT-CPM. Dynamische Optimierung. Spieltheorie. Ganzzahlige Programmierung. Nichtlineare Programmierung Simulation. Anhang. Lösungen für ausgewählte Übungsaufgaben.

Geometrie und Billard

Author: Serge Tabachnikov

Publisher: Springer-Verlag

ISBN: 3642319254

Category: Mathematics

Page: 165

View: 5657

DOWNLOAD NOW »
Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​

Mathematisches Denken

Vom Vergnügen am Umgang mit Zahlen

Author: T.W. Körner

Publisher: Springer-Verlag

ISBN: 3034850018

Category: Science

Page: 719

View: 6306

DOWNLOAD NOW »
Dieses Buch wendet sich zuallererst an intelligente Schüler ab 14 Jahren sowie an Studienanfänger, die sich für Mathematik interessieren und etwas mehr als die Anfangsgründe dieser Wissenschaft kennenlernen möchten. Es gibt inzwischen mehrere Bücher, die eine ähnliche Zielstellung verfolgen. Besonders gern erinnere ich mich an das Werk Vom Einmaleins zum Integral von Colerus, das ich in meiner Kindheit las. Es beginnt mit der folgenden entschiedenen Feststellung: Die Mathematik ist eine Mausefalle. Wer einmal in dieser Falle gefangen sitzt, findet selten den Ausgang, der zurück in seinen vormathematischen Seelenzustand leitet. ([49], S. 7) Einige dieser Bücher sind im Anhang zusammengestellt und kommen tiert. Tatsächlich ist das Unternehmen aber so lohnenswert und die Anzahl der schon vorhandenen Bücher doch so begrenzt, daß ich mich nicht scheue, ihnen ein weiteres hinzuzufügen. An zahlreichen amerikanischen Universitäten gibt es Vorlesungen, die gemeinhin oder auch offiziell als ,,Mathematik für Schöngeister'' firmieren. Dieser Kategorie ist das vorliegende Buch nicht zuzuordnen. Statt dessen soll es sich um eine ,,Mathematik für Mathematiker'' handeln, für Mathema tiker freilich, die noch sehr wenig von der Mathematik verstehen. Weshalb aber sollte nicht der eine oder andere von ihnen eines Tages den Autor dieses 1 Buches durch seine Vorlesungen in Staunen versetzen? Ich hoffe, daß auch meine Mathematikerkollegen Freude an dem Werk haben werden, und ich würde mir wünschen, daß auch andere Leser, bei denen die Wertschätzung für die Mathematik stärker als die Furcht vor ihr ist, Gefallen an ihm finden mögen.

Der Zahlensinn oder Warum wir rechnen können

Author: Stanislas Dehaene

Publisher: Springer-Verlag

ISBN: 3034878257

Category: Science

Page: 311

View: 3278

DOWNLOAD NOW »
Wir sind umgeben von Zahlen. Ob auf Kreditkarten gestanzt oder auf Münzen geprägt, ob auf Schecks gedruckt oder in den Spalten computerisierter Tabellen aufgelistet, überall beherrschen Zahlen unser Leben. Sie sind auch der Kern unserer Technologie. Ohne Zahlen könnten wir weder Raketen starten, die das Sonnensystem erkunden, noch Brücken bauen, Güter austauschen oder Rech nungen bezahlen. In gewissem Sinn sind Zahlen also kulturelle Erfindungen, die sich ihrer Bedeutung nach nur mit der Landwirtschaft oder mit dem Rad vergleichen lassen. Aber sie könnten sogar noch tiefere Wurzeln haben. Tausende von Jahren vor Christus benutzten babylonische Wissenschaftler Zahlzeichen, um erstaun lich genaueastronomische Tabellen zu berechnen. Zehntausende von Jahren zuvor hatten Menschen der Steinzeit die ersten geschriebenen Zahlenreihen geschaffen, indem sie Knochen einkerbten oder Punkte auf Höhlenwände malten. Und, wie ich später überzeugend darzustellen hoffe, schon vor weiteren Millionen von Jahren, lange bevor es Menschen gab, nahmen Tiere aller Arten Zahlen zur Kenntnis und stellten mit ihnen einfache Kopfrechnungen an. Sind Zahlen also fast so alt wie das Leben selbst? Sind sie in der Struktur unseres Gehirns verankert? Besitzen wir einen Zahlensinn, eine spezielle Intuition, die uns hilft, Zahlen und Mathematik mit Sinn zu erfüllen? Ich wurde vor fünfzehn Jahren, während meiner Ausbildung zum Mathema tiker, fasziniert von den abstrakten Objekten, mit denen ich umzugehen lernte, vor allem von den einfachsten von ihnen- den Zahlen.

Mathematik im mittelalterlichen Islam

Author: J. L. Berggren

Publisher: Springer-Verlag

ISBN: 9783540766889

Category: Mathematics

Page: 200

View: 3958

DOWNLOAD NOW »
Die Mathematik im mittelalterlichen Islam hatte großen Einfluss auf die allgemeine Entwicklung des Faches. Der Autor beschreibt diese Periode der Geschichte der Mathematik und bezieht sich dabei auf die arabischsprachigen Quellen. Zu den behandelten Themen gehören Dezimalrechnen, Geometrie, ebene und sphärische Trigonometrie, Algebra sowie die Approximation von Wurzeln von Gleichungen. Das Buch wendet sich an Mathematikhistoriker und -studenten, aber auch an alle Interessierten mit Mathematikkenntnissen der weiterführenden Schule.

Das ist o.B.d.A. trivial!

Eine Gebrauchsanleitung zur Formulierung mathematischer Gedanken mit vielen praktischen Tipps für Studierende der Mathematik und Informatik

Author: Albrecht Beutelspacher

Publisher: Springer-Verlag

ISBN: 3322915492

Category: Mathematics

Page: 96

View: 9527

DOWNLOAD NOW »
Was Sie schon immer über die Kunst, mathematische Texte zu formulieren, wissen wollten, aber nie zu fragen wagten: Was bedeutet "trivial", "wohldefiniert", "Korollar", "eindeutig", "o. B. d. A.", ...? Was sind gute Bezeichnungen? Wie organisiert man einen Beweis? Dieses Buch hilft den Studierenden der Mathematik mit vielen Beispielen und konkreten Ratschlägen bei der Formulierung mathematischer Übungsaufgaben, Seminararbeiten und Examensarbeiten.

Der LATEX-Begleiter

Author: Michel Goossens,Frank Mittelbach,Alexander Samarin

Publisher: N.A

ISBN: 9783827370440

Category: LATEX 2E

Page: 554

View: 2015

DOWNLOAD NOW »

Einführung in die Himmelsmechanik

Author: Forest Ray Moulton

Publisher: Springer-Verlag

ISBN: 3663160483

Category: Science

Page: 416

View: 8943

DOWNLOAD NOW »
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Diophant und diophantische Gleichungen

Author: BASMAKOVA

Publisher: Springer-Verlag

ISBN: 3034873573

Category: Juvenile Nonfiction

Page: 98

View: 3596

DOWNLOAD NOW »
Die Wissenschaft arbeitet kumulativ. In der Mathematik und in den Naturwissenschaften gibt es keine unvollendeten Sympho nien. über Jahrhunderte hinweg können thematische Problem kreise ihre Dynamik behalten; im historischen Rückblick erschei nen dann lange, zusammenhängende Problemketten von einer faszinierenden Kontinuität des menschlichen Denkens. Es ist die Befriedigung grundlegender materieller und geistiger Bedürfnisse der Menschheit, die dem weitgespannten Bogen zwischen Ver gangenheit und Gegenwart Stabilität verleiht. Zugleich und andererseits liegt hierin der Umstand begründet, daß wissenschaftliche Fragestellungen der Vergangenheit in die Gegenwart und Zukunft hineinwirken können. Gerade die führen den 'Wissenschaftler waren sich der Fruchtbarkeit historischen Selbstverständnisses für ihre eigenen Forschungen bewußt. Die Abhandlungen von LAGRANGE zum Beispiel gehören zu den Kost barkeiten auch der mathematik-historischen Literatur. Und wie wären die Leistungen von EULER und GAUSS, von EINSTEIN und v. LAUE möglich gewesen ohne die von ihnen selbst vorgenommene Einordnung in eine wissenschaftliche Tradition? Auch die durch greifenden Revolutionen in der 'Vissenschaft bedeuten nichts an deres als die dialektische überwindung eines zuvor bestätigten wissenschaftlichen Tatbestandes. In diesem Sinne stellt die hier dargestellte Geschichte der Dio phantischen Analysis geradezu einen klassischen Fall aktueller Geschichte der Mathematik dar. Der historische Bogen spannt sich über mehr als 17 Jahrhunderte, vom Ausgang der Antike bis zum Beginn des 20. Jahrhunderts, ohne daß eine künstliche Reaktivierung der Leistungen von DIOPHANT notwendig geworden wäre. 1* 4 Geleitwort Die Autorin des vorgelegten Büchleins ist eine erfahrene und er folgreiche Historikerin der Mathematik. Frau Prof. Dr. I. G.