Tropical Geometry and Integrable Systems

A Conference on Tropical Geometry and Integrable Systems, July 3-8, 2011, School of Mathematics and Statistics, University of Glasgow, United Kingdom

Author: Chris Athorne,Diane Maclagan,Ian Strachan

Publisher: American Mathematical Soc.

ISBN: 0821875531

Category: Mathematics

Page: 155

View: 9375

DOWNLOAD NOW »
This volume contains the proceedings of the conference on tropical geometry and integrable systems, held July 3-8, 2011, at the University of Glasgow, United Kingdom. One of the aims of this conference was to bring together researchers in the field of tropical geometry and its applications, from apparently disparate ends of the spectrum, to foster a mutual understanding and establish a common language which will encourage further developments of the area. This aim is reflected in these articles, which cover areas from automata, through cluster algebras, to enumerative geometry. In addition, two survey articles are included which introduce ideas from researchers on one end of this spectrum to researchers on the other. This book is intended for graduate students and researchers interested in tropical geometry and integrable systems and the developing links between these two areas.

Differential Geometry and Integrable Systems

A Conference on Integrable Systems in Differential Geometry, University of Tokyo, Japan, July 17-21, 2000

Author: Martin A. Guest,Reiko Miyaoka,Yoshihiro Ohnita

Publisher: American Mathematical Soc.

ISBN: 0821829386

Category: Mathematics

Page: 349

View: 2275

DOWNLOAD NOW »
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced by integrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generally reveals previously unnoticed symmetries and can lead to surprisingly explicit solutions.Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and will serve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference, also available from the 'AMS', is ""Integrable Systems, Topology, and Physics, Volume 309"" in the ""Contemporary Mathematics"" series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the 'AMS' in the ""Advanced Studies in Pure Mathematics"" series.

Integrable Systems, Topology, and Physics

A Conference on Integrable Systems in Differential Geometry, University of Tokyo, Japan, July 17-21, 2000

Author: Joel B Wolfe,Martin A. Guest,Reiko Miyaoka,Yoshihiro Ohnita

Publisher: American Mathematical Soc.

ISBN: 0821829394

Category: Mathematics

Page: 324

View: 1798

DOWNLOAD NOW »
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced by integrable systems. This book is the second of three collections of expository and research articles. This volume focuses on topology and physics. The role of zero curvature equations outside of the traditional context of differential geometry has been recognized relatively recently, but it has been an extraordinarily productive one, and most of the articles in this volume make some reference to it.Symplectic geometry, Floer homology, twistor theory, quantum cohomology, and the structure of special equations of mathematical physics, such as the Toda field equations - all of these areas have gained from the integrable systems point of view and contributed to it. Many of the articles in this volume are written by prominent researchers and will serve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The first volume from this conference, also available from the 'AMS', is ""Differential Geometry and Integrable Systems, Volume 308"" in the ""Contemporary Mathematics"" series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the 'AMS' in the ""Advanced Studies in Pure Mathematics"" series.

Nonarchimedean and Tropical Geometry

Author: Matthew Baker,Sam Payne

Publisher: Springer

ISBN: 3319309455

Category: Mathematics

Page: 526

View: 7463

DOWNLOAD NOW »
This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.

Optimal Control and Geometry: Integrable Systems

Author: Velimir Jurdjevic

Publisher: Cambridge University Press

ISBN: 1316586332

Category: Mathematics

Page: N.A

View: 3838

DOWNLOAD NOW »
The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.

Topology, Geometry, Integrable Systems, and Mathematical Physics

Novikov's Seminar 2012-2014

Author: V. M. Buchstaber,B. A. Dubrovin, I. M. Krichever

Publisher: American Mathematical Soc.

ISBN: 1470418711

Category: Mathematics

Page: 393

View: 3273

DOWNLOAD NOW »
Articles in this collection are devoted to modern problems of topology, geometry, mathematical physics, and integrable systems, and they are based on talks given at the famous Novikov's seminar at the Steklov Institute of Mathematics in Moscow in 2012-2014. The articles cover many aspects of seemingly unrelated areas of modern mathematics and mathematical physics; they reflect the main scientific interests of the organizer of the seminar, Sergey Petrovich Novikov. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.

Algebraic and Combinatorial Aspects of Tropical Geometry

Author: Erwan Brugalle,Maria Angelica Cueto,Alicia Dickenstein,Eva-Maria Feichtner,Ilia Itenberg

Publisher: American Mathematical Soc.

ISBN: 0821891464

Category: Mathematics

Page: 350

View: 2015

DOWNLOAD NOW »
This volume contains the proceedings of the CIEM workshop on Tropical Geometry, held December 12-16, 2011, at the International Centre for Mathematical Meetings (CIEM), Castro Urdiales, Spain. Tropical geometry is a new and rapidly developing field of mat

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices

Author: Anton Dzhamay,Ken'ichi Maruno,Virgil U. Pierce

Publisher: American Mathematical Soc.

ISBN: 0821887475

Category: Mathematics

Page: 345

View: 7885

DOWNLOAD NOW »
This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates

Algebraic and Analytic Aspects of Integrable Systems and Painleve Equations

Author: Anton Dzhamay,Kenichi Maruno,Christopher M. Ormerod

Publisher: American Mathematical Soc.

ISBN: 1470416549

Category: Algebra

Page: 194

View: 3861

DOWNLOAD NOW »
This volume contains the proceedings of the AMS Special Session on Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, held on January 18, 2014, at the Joint Mathematics Meetings in Baltimore, MD. The theory of integrable systems has been at the forefront of some of the most important developments in mathematical physics in the last 50 years. The techniques to study such systems have solid foundations in algebraic geometry, differential geometry, and group representation theory. Many important special solutions of continuous and discrete integrable systems can be written in terms of special functions such as hypergeometric and basic hypergeometric functions. The analytic tools developed to study integrable systems have numerous applications in random matrix theory, statistical mechanics and quantum gravity. One of the most exciting recent developments has been the emergence of good and interesting discrete and quantum analogues of classical integrable differential equations, such as the Painlevé equations and soliton equations. Many algebraic and analytic ideas developed in the continuous case generalize in a beautifully natural manner to discrete integrable systems. The editors have sought to bring together a collection of expository and research articles that represent a good cross section of ideas and methods in these active areas of research within integrable systems and their applications.

Algebra, Geometry and Mathematical Physics

AGMP, Mulhouse, France, October 2011

Author: Abdenacer Makhlouf,Eugen Paal,Sergei D. Silvestrov,Alexander Stolin

Publisher: Springer

ISBN: 3642553613

Category: Mathematics

Page: 684

View: 7571

DOWNLOAD NOW »
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers and advanced students.

Geometry and Integrability

Author: Lionel L. Mason,Lionel Mason,Yavuz Nutku

Publisher: Cambridge University Press

ISBN: 9780521529990

Category: Mathematics

Page: 153

View: 2214

DOWNLOAD NOW »
Articles from leading researchers to introduce the reader to cutting-edge topics in integrable systems theory.

Spinning Tops

A Course on Integrable Systems

Author: M. Audin

Publisher: Cambridge University Press

ISBN: 9780521779197

Category: Mathematics

Page: 148

View: 3961

DOWNLOAD NOW »
Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established iby many mathematicians. This book presents some of these techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the wealth of original ideas will make it also appeal to researchers.

Tropical and Idempotent Mathematics and Applications

Author: Grigoriĭ Lazarevich Litvinov,S. N. Sergeev

Publisher: American Mathematical Soc.

ISBN: 082189496X

Category: Mathematics

Page: 300

View: 5764

DOWNLOAD NOW »
This volume contains the proceedings of the International Workshop on Tropical and Idempotent Mathematics, held at the Independent University of Moscow, Russia, from August 26-31, 2012. The main purpose of the conference was to bring together and unite researchers and specialists in various areas of tropical and idempotent mathematics and applications. This volume contains articles on algebraic foundations of tropical mathematics as well as articles on applications of tropical mathematics in various fields as diverse as economics, electroenergetic networks, chemical reactions, representation theory, and foundations of classical thermodynamics. This volume is intended for graduate students and researchers interested in tropical and idempotent mathematics or in their applications in other areas of mathematics and in technical sciences.

Dynamical Systems VII

Integrable Systems Nonholonomic Dynamical Systems

Author: V.I. Arnol'd,S.P. Novikov

Publisher: Springer Science & Business Media

ISBN: 366206796X

Category: Mathematics

Page: 344

View: 1717

DOWNLOAD NOW »
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.

Trends in Contemporary Mathematics

Author: Vincenzo Ancona,Elisabetta Strickland

Publisher: Springer

ISBN: 3319052543

Category: Mathematics

Page: 307

View: 7853

DOWNLOAD NOW »
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.

Vertex Algebras and Algebraic Curves: Second Edition

Author: Edward Frenkel,David Ben-Zvi

Publisher: American Mathematical Soc.

ISBN: 0821836749

Category: Mathematics

Page: 400

View: 9358

DOWNLOAD NOW »
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics

Jairo Charris Seminar 2010, Universidad Sergio Arboleda, Santa Marta Colombia

Author: Primitivo B. Acosta Humanez

Publisher: American Mathematical Soc.

ISBN: 0821875841

Category: Mathematics

Page: 211

View: 686

DOWNLOAD NOW »
This volume represents the 2010 Jairo Charris Seminar in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, which was held at the Universidad Sergio Arboleda in Santa Marta, Colombia. The papers cover the fields of Supersymmetric Quantum Mechanics and Quantum Integrable Systems, from an algebraic point of view. Some results presented in this volume correspond to the analysis of Darboux Transformations in higher order as well as some exceptional orthogonal polynomials. The reader will find an interesting Galois approach to study finite gap potentials.

Geometry and Topology Down Under

Author: Craig D. Hodgson,William H. Jaco,Martin G. Scharlemann,Stephan Tillmann

Publisher: American Mathematical Soc.

ISBN: 0821884808

Category: Mathematics

Page: 369

View: 1357

DOWNLOAD NOW »
This book contains the proceedings of the conference Geometry & Topology Down Under, held July 11-22, 2011, at the University of Melbourne, Parkville, Australia, in honour of Hyam Rubinstein. The main topic of the book is low-dimensional geometry and topology. It includes both survey articles based on courses presented at the conferences and research articles devoted to important questions in low-dimensional geometry. Together, these contributions show how methods from different fields of mathematics contribute to the study of 3-manifolds and Gromov hyperbolic groups. It also contains a list of favorite problems by Hyam Rubinstein.

Integrable systems in the realm of algebraic geometry

Author: Pol Vanhaecke

Publisher: Springer Verlag

ISBN: 9783540618867

Category: Mathematics

Page: 218

View: 2657

DOWNLOAD NOW »
Integrable systems are related to algebraic geometry in many different ways. This book deals with some aspects of this relation, the main focus being on the algebraic geometry of the level manifolds of integrable systems and the construction of integrable systems, starting from algebraic geometric data. For a rigorous account of these matters, integrable systems are defined on affine algebraic varieties rather than on smooth manifolds. The exposition is self-contained and is accessible at the graduate level; in particular, prior knowledge of integrable systems is not assumed.