Tropical Geometry and Integrable Systems

A Conference on Tropical Geometry and Integrable Systems, July 3-8, 2011, School of Mathematics and Statistics, University of Glasgow, United Kingdom

Author: Chris Athorne,Diane Maclagan,Ian Strachan

Publisher: American Mathematical Soc.

ISBN: 0821875531

Category: Mathematics

Page: 155

View: 1592

DOWNLOAD NOW »
This volume contains the proceedings of the conference on tropical geometry and integrable systems, held July 3-8, 2011, at the University of Glasgow, United Kingdom. One of the aims of this conference was to bring together researchers in the field of tropical geometry and its applications, from apparently disparate ends of the spectrum, to foster a mutual understanding and establish a common language which will encourage further developments of the area. This aim is reflected in these articles, which cover areas from automata, through cluster algebras, to enumerative geometry. In addition, two survey articles are included which introduce ideas from researchers on one end of this spectrum to researchers on the other. This book is intended for graduate students and researchers interested in tropical geometry and integrable systems and the developing links between these two areas.

Differential Geometry and Integrable Systems

A Conference on Integrable Systems in Differential Geometry, University of Tokyo, Japan, July 17-21, 2000

Author: Martin A. Guest,Reiko Miyaoka,Yoshihiro Ohnita

Publisher: American Mathematical Soc.

ISBN: 0821829386

Category: Mathematics

Page: 349

View: 5731

DOWNLOAD NOW »
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced by integrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generally reveals previously unnoticed symmetries and can lead to surprisingly explicit solutions.Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and will serve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference, also available from the 'AMS', is ""Integrable Systems, Topology, and Physics, Volume 309"" in the ""Contemporary Mathematics"" series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the 'AMS' in the ""Advanced Studies in Pure Mathematics"" series.

Integrable Systems, Topology, and Physics

A Conference on Integrable Systems in Differential Geometry, University of Tokyo, Japan, July 17-21, 2000

Author: Joel B Wolfe,Martin A. Guest,Reiko Miyaoka,Yoshihiro Ohnita

Publisher: American Mathematical Soc.

ISBN: 0821829394

Category: Mathematics

Page: 324

View: 2525

DOWNLOAD NOW »
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced by integrable systems. This book is the second of three collections of expository and research articles. This volume focuses on topology and physics. The role of zero curvature equations outside of the traditional context of differential geometry has been recognized relatively recently, but it has been an extraordinarily productive one, and most of the articles in this volume make some reference to it.Symplectic geometry, Floer homology, twistor theory, quantum cohomology, and the structure of special equations of mathematical physics, such as the Toda field equations - all of these areas have gained from the integrable systems point of view and contributed to it. Many of the articles in this volume are written by prominent researchers and will serve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The first volume from this conference, also available from the 'AMS', is ""Differential Geometry and Integrable Systems, Volume 308"" in the ""Contemporary Mathematics"" series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the 'AMS' in the ""Advanced Studies in Pure Mathematics"" series.

Nonarchimedean and Tropical Geometry

Author: Matthew Baker,Sam Payne

Publisher: Springer

ISBN: 3319309455

Category: Mathematics

Page: 526

View: 7536

DOWNLOAD NOW »
This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.

Optimal Control and Geometry: Integrable Systems

Author: Velimir Jurdjevic

Publisher: Cambridge University Press

ISBN: 1316586332

Category: Mathematics

Page: N.A

View: 3267

DOWNLOAD NOW »
The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.

Algebraic and Combinatorial Aspects of Tropical Geometry

Author: Erwan Brugalle,Maria Angelica Cueto,Alicia Dickenstein,Eva-Maria Feichtner,Ilia Itenberg

Publisher: American Mathematical Soc.

ISBN: 0821891464

Category: Mathematics

Page: 350

View: 8257

DOWNLOAD NOW »
This volume contains the proceedings of the CIEM workshop on Tropical Geometry, held December 12-16, 2011, at the International Centre for Mathematical Meetings (CIEM), Castro Urdiales, Spain. Tropical geometry is a new and rapidly developing field of mat

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices

Author: Anton Dzhamay,Ken'ichi Maruno,Virgil U. Pierce

Publisher: American Mathematical Soc.

ISBN: 0821887475

Category: Mathematics

Page: 345

View: 9219

DOWNLOAD NOW »
This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates

Topology, Geometry, Integrable Systems, and Mathematical Physics

Novikov's Seminar 2012-2014

Author: V. M. Buchstaber,B. A. Dubrovin, I. M. Krichever

Publisher: American Mathematical Soc.

ISBN: 1470418711

Category: Mathematics

Page: 393

View: 8403

DOWNLOAD NOW »
Articles in this collection are devoted to modern problems of topology, geometry, mathematical physics, and integrable systems, and they are based on talks given at the famous Novikov's seminar at the Steklov Institute of Mathematics in Moscow in 2012-2014. The articles cover many aspects of seemingly unrelated areas of modern mathematics and mathematical physics; they reflect the main scientific interests of the organizer of the seminar, Sergey Petrovich Novikov. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.

Tropical and Idempotent Mathematics and Applications

Author: Grigoriĭ Lazarevich Litvinov,S. N. Sergeev

Publisher: American Mathematical Soc.

ISBN: 082189496X

Category: Mathematics

Page: 300

View: 9029

DOWNLOAD NOW »
This volume contains the proceedings of the International Workshop on Tropical and Idempotent Mathematics, held at the Independent University of Moscow, Russia, from August 26-31, 2012. The main purpose of the conference was to bring together and unite researchers and specialists in various areas of tropical and idempotent mathematics and applications. This volume contains articles on algebraic foundations of tropical mathematics as well as articles on applications of tropical mathematics in various fields as diverse as economics, electroenergetic networks, chemical reactions, representation theory, and foundations of classical thermodynamics. This volume is intended for graduate students and researchers interested in tropical and idempotent mathematics or in their applications in other areas of mathematics and in technical sciences.

Geometry and Integrability

Author: Lionel L. Mason,Lionel Mason,Yavuz Nutku

Publisher: Cambridge University Press

ISBN: 9780521529990

Category: Mathematics

Page: 153

View: 2554

DOWNLOAD NOW »
Articles from leading researchers to introduce the reader to cutting-edge topics in integrable systems theory.

Algebraic and Analytic Aspects of Integrable Systems and Painleve Equations

Author: Anton Dzhamay,Kenichi Maruno,Christopher M. Ormerod

Publisher: American Mathematical Soc.

ISBN: 1470416549

Category: Algebra

Page: 194

View: 7090

DOWNLOAD NOW »
This volume contains the proceedings of the AMS Special Session on Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, held on January 18, 2014, at the Joint Mathematics Meetings in Baltimore, MD. The theory of integrable systems has been at the forefront of some of the most important developments in mathematical physics in the last 50 years. The techniques to study such systems have solid foundations in algebraic geometry, differential geometry, and group representation theory. Many important special solutions of continuous and discrete integrable systems can be written in terms of special functions such as hypergeometric and basic hypergeometric functions. The analytic tools developed to study integrable systems have numerous applications in random matrix theory, statistical mechanics and quantum gravity. One of the most exciting recent developments has been the emergence of good and interesting discrete and quantum analogues of classical integrable differential equations, such as the Painlevé equations and soliton equations. Many algebraic and analytic ideas developed in the continuous case generalize in a beautifully natural manner to discrete integrable systems. The editors have sought to bring together a collection of expository and research articles that represent a good cross section of ideas and methods in these active areas of research within integrable systems and their applications.

Dynamical Systems VII

Integrable Systems Nonholonomic Dynamical Systems

Author: V.I. Arnol'd,S.P. Novikov

Publisher: Springer Science & Business Media

ISBN: 366206796X

Category: Mathematics

Page: 344

View: 4380

DOWNLOAD NOW »
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.

Spinning Tops

A Course on Integrable Systems

Author: M. Audin

Publisher: Cambridge University Press

ISBN: 9780521779197

Category: Mathematics

Page: 148

View: 9905

DOWNLOAD NOW »
Since the time of Lagrange and Euler, it has been well known that an understanding of algebraic curves can illuminate the picture of rigid bodies provided by classical mechanics. A modern view of the role played by algebraic geometry has been established iby many mathematicians. This book presents some of these techniques, which fall within the orbit of finite dimensional integrable systems. The main body of the text presents a rich assortment of methods and ideas from algebraic geometry prompted by classical mechanics, whilst in appendices the general, abstract theory is described. The methods are given a topological application to the study of Liouville tori and their bifurcations. The book is based on courses for graduate students given by the author at Strasbourg University but the wealth of original ideas will make it also appeal to researchers.

Geometry and Topology Down Under

Author: Craig D. Hodgson,William H. Jaco,Martin G. Scharlemann,Stephan Tillmann

Publisher: American Mathematical Soc.

ISBN: 0821884808

Category: Mathematics

Page: 369

View: 8314

DOWNLOAD NOW »
This book contains the proceedings of the conference Geometry & Topology Down Under, held July 11-22, 2011, at the University of Melbourne, Parkville, Australia, in honour of Hyam Rubinstein. The main topic of the book is low-dimensional geometry and topology. It includes both survey articles based on courses presented at the conferences and research articles devoted to important questions in low-dimensional geometry. Together, these contributions show how methods from different fields of mathematics contribute to the study of 3-manifolds and Gromov hyperbolic groups. It also contains a list of favorite problems by Hyam Rubinstein.

Trends in Contemporary Mathematics

Author: Vincenzo Ancona,Elisabetta Strickland

Publisher: Springer

ISBN: 3319052543

Category: Mathematics

Page: 307

View: 7680

DOWNLOAD NOW »
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.

Topological and Algebraic Geometry Methods in Contemporary Mathematical Physics

Author: B. A. Dubrovin,I. M. Krichever,Sergeĭ Petrovich Novikov

Publisher: N.A

ISBN: 9781904868309

Category: Geometry, Algebraic

Page: 139

View: 8272

DOWNLOAD NOW »
This volume is a classic survey of algebraic geometry and topological methods in various problems of mathematical physics and provides an excellent reference text for graduate students and researchers. The book is divided into three parts: the first part concerns Hamiltonian formalism and methods that generalise Morse for certain dynamical systems of physical origin; the second part presents algebraic geometry analysis of the Yang-Baxter equations for two-dimensional models; and finally, part three presents the theory of multidimensional theta functions of Abel, Riemann, Poincare in a form that is elementally and convenient for applications.

Algebraic Geometry: From algebraic varieties to schemes

Author: Kenji Ueno

Publisher: American Mathematical Soc.

ISBN: 9780821808627

Category: Mathematics

Page: 154

View: 1939

DOWNLOAD NOW »
Beginning algebraic geometers are well served by Uneno's inviting introduction to the language of schemes. Grothendieck's schemes and Zariski's emphasis on algebra and rigor are primary sources for this introduction to a rich mathematical subject. Ueno's book is a self-contained text suitable for an introductory course on algebraic geometry.

Darboux Transformations in Integrable Systems

Theory and their Applications to Geometry

Author: Chaohao Gu,Anning Hu,Zixiang Zhou

Publisher: Springer Science & Business Media

ISBN: 1402030886

Category: Science

Page: 308

View: 9192

DOWNLOAD NOW »
The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry. This book presents the Darboux transformations in matrix form and provides purely algebraic algorithms for constructing the explicit solutions. A basis for using symbolic computations to obtain the explicit exact solutions for many integrable systems is established. Moreover, the behavior of simple and multi-solutions, even in multi-dimensional cases, can be elucidated clearly. The method covers a series of important equations such as various kinds of AKNS systems in R1+n, harmonic maps from 2-dimensional manifolds, self-dual Yang-Mills fields and the generalizations to higher dimensional case, theory of line congruences in three dimensions or higher dimensional space etc. All these cases are explained in detail. This book contains many results that were obtained by the authors in the past few years. Audience: The book has been written for specialists, teachers and graduate students (or undergraduate students of higher grade) in mathematics and physics.

Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics

Jairo Charris Seminar 2010, Universidad Sergio Arboleda, Santa Marta Colombia

Author: Primitivo B. Acosta Humanez

Publisher: American Mathematical Soc.

ISBN: 0821875841

Category: Mathematics

Page: 211

View: 2379

DOWNLOAD NOW »
This volume represents the 2010 Jairo Charris Seminar in Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, which was held at the Universidad Sergio Arboleda in Santa Marta, Colombia. The papers cover the fields of Supersymmetric Quantum Mechanics and Quantum Integrable Systems, from an algebraic point of view. Some results presented in this volume correspond to the analysis of Darboux Transformations in higher order as well as some exceptional orthogonal polynomials. The reader will find an interesting Galois approach to study finite gap potentials.