An Introduction for Scientists and Engineers

Author: Peter Davidson

Publisher: Oxford University Press, USA

ISBN: 0198722591

Category: Technology & Engineering

Page: 656

View: 9304

This is an advanced textbook on the subject of turbulence, and is suitable for engineers, physical scientists and applied mathematicians. The aim of the book is to bridge the gap between the elementary accounts of turbulence found in undergraduate texts, and the more rigorous monographs on the subject. Throughout, the book combines the maximum of physical insight with the minimum of mathematical detail. Chapters 1 to 5 may be appropriate as background material for an advanced undergraduate or introductory postgraduate course on turbulence, while chapters 6 to 10 may be suitable as background material for an advanced postgraduate course on turbulence, or act as a reference source for professional researchers. This second edition covers a decade of advancement in the field, streamlining the original content while updating the sections where the subject has moved on. The expanded content includes large-scale dynamics, stratified & rotating turbulence, the increased power of direct numerical simulation, two-dimensional turbulence, Magnetohydrodynamics, and turbulence in the core of the Earth

Turbulence: An Introduction for Scientists and Engineers

Author: P.A. Davidson

Publisher: OUP Oxford

ISBN: 0191589853

Category: Mathematics

Page: 680

View: 4029

Based on a taught by the author at the University of Cambridge, this comprehensive text on turbulence and fluid dynamics is aimed at year 4 undergraduates and graduates in applied mathematics, physics, and engineering, and provides an ideal reference for industry professionals and researchers. It bridges the gap between elementary accounts of turbulence found in undergraduate texts and more rigorous accounts given in monographs on the subject. Containing many examples, the author combines the maximum of physical insight with the minimum of mathematical detail where possible. The text is highly illustrated throughout, and includes colour plates; required mathematical techniques are covered in extensive appendices. The text is divided into three parts: Part I consists of a traditional introduction to the classical aspects of turbulence, the nature of turbulence, and the equations of fluid mechanics. Mathematics is kept to a minimum, presupposing only an elementary knowledge of fluid mechanics and statistics. Part II tackles the problem of homogeneous turbulence with a focus on describing the phenomena in real space. Part III covers certain special topics rarely discussed in introductory texts. Many geophysical and astrophysical flows are dominated by the effects of body forces, such as buoyancy, Coriolis and Lorentz forces. Moreover, certain large-scale flows are approximately two-dimensional and this has led to a concerted investigation of two-dimensional turbulence over the last few years. Both the influence of body forces and two-dimensional turbulence are discussed.

Grundlagen der Strömungsmechanik

Eine Einführung in die Theorie der Strömung von Fluiden

Author: Franz Durst

Publisher: Springer-Verlag

ISBN: 3540313249

Category: Science

Page: 758

View: 1361

Dieses Lehrbuch stützt sich auf mathematische und physikalische Grundkenntnisse von Studenten mittlerer Semester. Es erläutert den Zusammenhang moderner Strömungsmechanik zur technischen Mechanik und bezieht moderne Mess- und numerische Berechnungsverfahren ein. Jedes Kapitel enthält den Stoff einer einwöchigen Vorlesung, der so aufgebaut ist, dass er Studenten an die jeweilige Spezialliteratur heranführt.


Author: Etienne Guyon,Jean-Pierre Hulin,Luc Petit

Publisher: Springer-Verlag

ISBN: 3322898318

Category: Technology & Engineering

Page: 466

View: 3867

Neben der Herleitung und Darstellung der fundamentalen Gleichungen enthält dieses Lehrbuch sehr viele Beispiele und Anwendungen, so z.B. eine genaue Diskussion des Flugmechanismus sowie der Wirkung der verschiedenen Klappen an Flügeln, und ist daher auch für Dozenten eine Fundgrube zur anschaulichen Auflockerung der Vorlesung. Neben den beiden üblichen Schwerpunktthemen "Dynamik idealer Fluide" und "Verhalten sehr viskoser Fluide" wird das wichtige Thema "Grenzschichten" besonders behandelt. Ein Anhang über suprafluides Helium - ein Beispiel für ein ideales Fluid - rundet das Stoffgebiet ab.

Turbulence Nature and the Inverse Problem

Author: L. N. Pyatnitsky

Publisher: Springer Science & Business Media

ISBN: 9048122511

Category: Science

Page: 197

View: 8938

Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more comprehensive problem of the primary perturbation nature, noted by H.A. Lorentz, which still remains unsolved. Generally, any flow steadiness should be supported by pressure waves emitted by some external source, e.g. a piston or a receiver. The wave plane front in channels quickly takes convex configuration owing to Rayleigh's law of diffraction divergence. The Schlieren technique and pressure wave registration were employed to investigate the wave interaction with boundary layer, while reflecting from the channel wall. The reflection induces boundary-layer local separation and following pressure rapid increase within the perturbation zone. It propagates as an acoustic wave packet of spherical shape, bearing oscillations of hydrodynamic parameters. Superposition of such packets forms a spatio-temporal field of oscillations fading as 1/r. This implies a mechanism of the turbulence. Vorticity existing in the boundary layer does not penetrate in itself into potential main stream. But the wave leaving the boundary layer carries away some part of fluid along with frozen-in vorticity. The vorticity eddies form another field of oscillations fading as 1/r2. This implies a second mechanism of turbulence. Thereupon the oscillation spatio-temporal field and its randomization development are easy computed. Also, normal burning transition into detonation is explained, and the turbulence inverse problem is set and solved as applied to plasma channels created by laser Besselian beams.

An Introduction to Turbulent Flow

Author: Jean Mathieu,Julian Scott

Publisher: Cambridge University Press

ISBN: 9780521775380

Category: Science

Page: 374

View: 5534

First published in 2000, this book provides the physical and mathematical framework necessary to understand turbulent flow.

Introduction to Magnetohydrodynamics

Author: P. A. Davidson

Publisher: Cambridge University Press

ISBN: 1107160162

Category: Science

Page: 498

View: 1748

Comprehensive textbook prioritising physical ideas over mathematical detail. New material includes fusion plasma magnetohydrodynamics.

Theoretical and Computational Aerodynamics

Author: Tapan K. Sengupta

Publisher: John Wiley & Sons

ISBN: 1118787579

Category: Technology & Engineering

Page: 516

View: 6057

Aerodynamics has seen many developments due to the growth of scientific computing, which has caused the design cycle time of aerospace vehicles to be heavily reduced. Today computational aerodynamics appears in the preliminary step of a new design, relegating costly, time-consuming wind tunnel testing to the final stages of design. Theoretical and Computational Aerodynamics is aimed to be a comprehensive textbook, covering classical aerodynamic theories and recent applications made possible by computational aerodynamics. It starts with a discussion on lift and drag from an overall dynamical approach, and after stating the governing Navier-Stokes equation, covers potential flows and panel method. Low aspect ratio and delta wings (including vortex breakdown) are also discussed in detail, and after introducing boundary layer theory, computational aerodynamics is covered for DNS and LES. Other topics covered are on flow transition to analyse NLF airfoils, bypass transition, streamwise and cross-flow instability over swept wings, viscous transonic flow over airfoils, low Reynolds number aerodynamics, high lift devices and flow control. Key features: Blends classical theories of incompressible aerodynamics to panel methods Covers lifting surface theories and low aspect ratio wing and wing-body aerodynamics Presents computational aerodynamics from first principles for incompressible and compressible flows Covers unsteady and low Reynolds number aerodynamics Includes an up-to-date account of DNS of airfoil aerodynamics including flow transition for NLF airfoils Contains chapter problems and illustrative examples Accompanied by a website hosting problems and a solution manual Theoretical and Computational Aerodynamics is an ideal textbook for undergraduate and graduate students, and is also aimed to be a useful resource book on aerodynamics for researchers and practitioners in the research labs and the industry.

Instabilities, Chaos and Turbulence

An Introduction to Nonlinear Dynamics and Complex Systems

Author: Paul Manneville

Publisher: Imperial College Press

ISBN: 9781860944918

Category: Science

Page: 391

View: 740

This book is an introduction to the application of nonlinear dynamics to problems of stability, chaos and turbulence arising in continuous media and their connection to dynamical systems. With an emphasis on the understanding of basic concepts, it should be of interest to nearly any science-oriented undergraduate and potentially to anyone who wants to learn about recent advances in the field of applied nonlinear dynamics. Technicalities are, however, not completely avoided. They are instead explained as simply as possible using heuristic arguments and specific worked examples.

An Introduction To Turbulence

Author: Paul A. Libby

Publisher: CRC Press

ISBN: 9781560321002

Category: Technology & Engineering

Page: 250

View: 5035

Beginning with a description of turbulence, its various manifestations, and a brief history of study, this text also incorporates modern perspectives on turbulence. The text also covers such topics as intermittency and the resultant conditional sampling and averaging of turbulent flows, the role of large scale computation of the fundamental equations of fluid mechanics in providing information on variables, and asymptotic methods which are used to expose important features of turbulent flows. Meaningful exercises are included in every section.

An Introduction to Ocean Turbulence

Author: S. A. Thorpe

Publisher: Cambridge University Press

ISBN: 1139467816

Category: Science

Page: N.A

View: 7975

This textbook provides an introduction to turbulent motion occurring naturally in the ocean on scales ranging from millimetres to hundreds of kilometres. It describes turbulence in the mixed boundary layers at the sea surface and seabed, turbulent motion in the density-stratified water between, and the energy sources that support and sustain ocean mixing. Little prior knowledge of physical oceanography is assumed. The text is supported by numerous figures, extensive further reading lists, and more than 50 exercises that are graded in difficulty. Detailed solutions to the exercises are available to instructors online at www.cambridge.org/9780521859486. This textbook is intended for undergraduate courses in physical oceanography, and all students interested in multidisciplinary aspects of how the ocean works, from the shoreline to the deep abyssal plains. It also forms a useful lead-in to the author's more advanced graduate textbook, The Turbulent Ocean (Cambridge University Press, 2005).

An Introduction to Turbulence and its Measurement

Thermodynamics and Fluid Mechanics Series

Author: P Bradshaw

Publisher: Elsevier

ISBN: 1483140849

Category: Technology & Engineering

Page: 238

View: 4965

An Introduction to Turbulence and Its Measurement is an introductory text on turbulence and its measurement. It combines the physics of turbulence with measurement techniques and covers topics ranging from measurable quantities and their physical significance to the analysis of fluctuating signals, temperature and concentration measurements, and the hot-wire anemometer. Examples of turbulent flows are presented. This book is comprised of eight chapters and begins with an overview of the physics of turbulence, paying particular attention to Newton's second law of motion, the Newtonian viscous fluid, and equations of motion. After a chapter devoted to measurable quantities, the discussion turns to some examples of turbulent flows, including turbulence behind a grid of bars, Couette flow, atmospheric and oceanic turbulence, and heat and mass transfer. The next chapter describes measurement techniques using hot wires, films, and thermistors, as well as Doppler-shift anemometers; glow-discharge or corona-discharge anemometers; pulsed-wire anemometer; and steady-flow techniques for fluctuation measurement. This monograph is intended for post-graduate students of aeronautics and fluid mechanics, but should also be readily understandable to those with a good general background in engineering fluid dynamics.

Eine kurze Geschichte der Menschheit

Author: Yuval Noah Harari

Publisher: DVA

ISBN: 364110498X

Category: History

Page: 528

View: 4197

Krone der Schöpfung? Vor 100 000 Jahren war der Homo sapiens noch ein unbedeutendes Tier, das unauffällig in einem abgelegenen Winkel des afrikanischen Kontinents lebte. Unsere Vorfahren teilten sich den Planeten mit mindestens fünf weiteren menschlichen Spezies, und die Rolle, die sie im Ökosystem spielten, war nicht größer als die von Gorillas, Libellen oder Quallen. Vor 70 000 Jahren dann vollzog sich ein mysteriöser und rascher Wandel mit dem Homo sapiens, und es war vor allem die Beschaffenheit seines Gehirns, die ihn zum Herren des Planeten und zum Schrecken des Ökosystems werden ließ. Bis heute hat sich diese Vorherrschaft stetig zugespitzt: Der Mensch hat die Fähigkeit zu schöpferischem und zu zerstörerischem Handeln wie kein anderes Lebewesen. Anschaulich, unterhaltsam und stellenweise hochkomisch zeichnet Yuval Harari die Geschichte des Menschen nach und zeigt alle großen, aber auch alle ambivalenten Momente unserer Menschwerdung.


The Legacy of A. N. Kolmogorov

Author: Uriel Frisch,Andreĭ Nikolaevich Kolmogorov

Publisher: Cambridge University Press

ISBN: 9780521457132

Category: Science

Page: 296

View: 5648

Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

An Introduction to Turbulent Reacting Flows

Author: R. S. Cant,E. Mastorakos

Publisher: Imperial College Press

ISBN: 1860947786

Category: Science

Page: 177

View: 6083

Provides physical intuition and key entries to the body of literature. This book includes historical perspective of the theories.

An Informal Conceptual Introduction to Turbulence

Second Edition of An Informal Introduction to Turbulence

Author: Arkady Tsinober

Publisher: Springer Science & Business Media

ISBN: 904813174X

Category: Technology & Engineering

Page: 464

View: 1025

This fully revised second edition focuses on physical phenomena and observations in turbulence, and is focused on reversing misconceptions and ill-defined concepts. New topics include ergodicity, Eulerian versus Lagrangian descriptions, theory validation, and anomalous scaling.

Large Eddy Simulation for Incompressible Flows

An Introduction

Author: P. Sagaut

Publisher: Springer Science & Business Media

ISBN: 3540264035

Category: Science

Page: 558

View: 6511

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Numerische Strömungsmechanik

Author: Joel H. Ferziger,Milovan Peric

Publisher: Springer-Verlag

ISBN: 3540682287

Category: Science

Page: 509

View: 3325

Das Buch bietet einen Überblick über die numerischen Methoden zur Lösung strömungsmechanischer Probleme. Die in der Praxis meistgenutzten Methoden werden detailliert beschrieben. Behandelt werden auch fortgeschrittene Methoden, wie die Simulation von Turbulenzen und Parallel-Verarbeitung. Das Buch beschreibt die Grundlagen und Prinzipien der verschiedenen Methoden. Numerische Genauigkeit und Abschätzung sowie Fehlerreduktion werden detailliert mit vielen Beispielen behandelt. Alle Computercodes sind über den Server ftp.springer.de des Springer-Verlages erhältlich (Internet).

An Informal Introduction to Turbulence

Author: A. Tsinober

Publisher: Springer Science & Business Media

ISBN: 030648384X

Category: Science

Page: 328

View: 3979

To Turbulence by ARKADY TSINOBER Department of Fluid Mechanics, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 0-306-48384-X Print ISBN: 1-4020-0110-X ©2004 Kluwer Academic Publishers NewYork, Boston, Dordrecht, London, Moscow Print ©2001 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans,electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline. com and Kluwer's eBookstoreat: http://ebooks. kluweronline. com TO My WITS TABLE OF CONTENTS 1 INTRODUCTION 1 Brief history 1 1. 1 1. 2 Nature and major qualitative universal features of turbulent flows 2 1. 2. 1 Representative examples of turbulent flows 2 1. 2. 2 In lieu of definition: major qualitative universal f- tures of turbulent flows 15 1. 3 Why turbulence is so impossibly difficult? The three N’s 19 On the Navier-Stokes equations 19 1. 3. 1 1. 3. 2 On the nature of the problem 21 1. 3. 3 Nonlinearity 22 1. 3. 4 Noninegrability 22 Nonlocality 1. 3. 5 23 1. 3. 6 On physics of turbulence 24 1. 3. 7 On statistical theories 24 1. 4 Outline of the following material 25 1. 5 In lieu of summary 26 2 ORIGINS OF TURBULENCE 27 2. 1 Instability 27 2. 2 Transition to turbulence versus routes to chaos 29 2.

Combustion Science and Engineering

Author: Kalyan Annamalai,Ishwar K. Puri

Publisher: CRC Press

ISBN: 9780849320712

Category: Technology & Engineering

Page: 1184

View: 8438

Students embarking on their studies in chemical, mechanical, aerospace, energy, and environmental engineering will face continually changing combustion problems, such as pollution control and energy efficiency, throughout their careers. Approaching these challenges requires a deep familiarity with the fundamental theory, mathematics, and physical concepts of combustion. Based on more than two decades of teaching experience, Combustion Science and Engineering lays the necessary groundwork while using an illustrative, hands-on approach. Taking a down-to-earth perspective, the book avoids heavy mathematics in the first seven chapters and in Chapter 17 (pollutants formation and destruction), but considers molecular concepts and delves into engineering details. It begins with an outline of thermodynamics; basics of thermochemistry and chemical equilibrium; descriptions of solid, liquid, and gaseous fuels; chemical kinetics and mass transfer; and applications of theory to practical systems. Beginning in chapter 8, the authors provide a detailed treatment of differential forms of conservation equations; analyses of fuel combustion including jet combustion and boundary layer problems; ignition; flame propagation; interactive and group combustion; pollutant formation and control; and turbulent combustion. In addition, this textbook includes abundant examples, illustrations, and exercises, as well as spreadsheet software in combustion available for download. This software allows students to work out the examples found in the text. Combustion Science and Engineering imparts the skills and foundational knowledge necessary for students to successfully approach and solve new problems.