Using Algebraic Geometry

Author: David A Cox,John Little,Donal O'Shea

Publisher: Springer Science & Business Media

ISBN: 1475769113

Category: Mathematics

Page: 503

View: 6196

DOWNLOAD NOW »
An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 5682

DOWNLOAD NOW »
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Commutative Algebra

With a View Toward Algebraic Geometry

Author: David Eisenbud

Publisher: Springer Science & Business Media

ISBN: 9780387942698

Category: Mathematics

Page: 785

View: 5668

DOWNLOAD NOW »
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.

Algebraic Geometry and Arithmetic Curves

Author: Qing Liu,Reinie Erne

Publisher: Oxford University Press

ISBN: 0191547808

Category: Mathematics

Page: 592

View: 7414

DOWNLOAD NOW »
This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.

Elementary Algebraic Geometry

Second Edition

Author: Keith Kendig

Publisher: Courier Dover Publications

ISBN: 048680187X

Category: Mathematics

Page: 320

View: 7308

DOWNLOAD NOW »
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring theory and algebraic geometry as well as varieties of arbitrary dimension and some elementary mathematics on curves. Upon finishing the text, students will have a foundation for advancing in several different directions, including toward a further study of complex algebraic or analytic varieties or to the scheme-theoretic treatments of algebraic geometry. 2015 edition.

The Geometry of Schemes

Author: David Eisenbud,Joe Harris

Publisher: Springer Science & Business Media

ISBN: 0387226397

Category: Mathematics

Page: 300

View: 8463

DOWNLOAD NOW »
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

Combinatorial Convexity and Algebraic Geometry

Author: Guenter Ewald

Publisher: Springer Science & Business Media

ISBN: 9780387947556

Category: Mathematics

Page: 374

View: 7582

DOWNLOAD NOW »
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

Algebraic Geometry

An Introduction to Birational Geometry of Algebraic Varieties

Author: S. Iitaka

Publisher: Springer

ISBN: 9781461381211

Category: Mathematics

Page: 357

View: 2007

DOWNLOAD NOW »
The aim of this book is to introduce the reader to the geometric theory of algebraic varieties, in particular to the birational geometry of algebraic varieties. This volume grew out of the author's book in Japanese published in 3 volumes by Iwanami, Tokyo, in 1977. While writing this English version, the author has tried to rearrange and rewrite the original material so that even beginners can read it easily without referring to other books, such as textbooks on commutative algebra. The reader is only expected to know the definition of Noetherin rings and the statement of the Hilbert basis theorem. The new chapters 1, 2, and 10 have been expanded. In particular, the exposition of D-dimension theory, although shorter, is more complete than in the old version. However, to keep the book of manageable size, the latter parts of Chapters 6, 9, and 11 have been removed. I thank Mr. A. Sevenster for encouraging me to write this new version, and Professors K. K. Kubota in Kentucky and P. M. H. Wilson in Cam bridge for their careful and critical reading of the English manuscripts and typescripts. I held seminars based on the material in this book at The University of Tokyo, where a large number of valuable comments and suggestions were given by students Iwamiya, Kawamata, Norimatsu, Tobita, Tsushima, Maeda, Sakamoto, Tsunoda, Chou, Fujiwara, Suzuki, and Matsuda.

A Course in Commutative Algebra

Author: Gregor Kemper

Publisher: Springer Science & Business Media

ISBN: 9783642035456

Category: Mathematics

Page: 248

View: 7818

DOWNLOAD NOW »
This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.

Algebraic Models in Geometry

Author: Yves Félix,John Oprea,Daniel Tanré

Publisher: Oxford University Press

ISBN: 0199206511

Category: Mathematics

Page: 460

View: 3645

DOWNLOAD NOW »
In the past century, different branches of mathematics have become more widely separated. Yet, there is an essential unity to mathematics which still springs up in fascinating ways to solve interdisciplinary problems. This text provides a bridge between the subjects of algebraic topology, including differential topology, and geometry. It is a survey book dedicated to a large audience of researchers and graduate students in these areas. Containing a generalintroduction to the algebraic theory of rational homotopy and giving concrete applications of algebraic models to the study of geometrical problems, mathematicians in many areas will find subjects that are of interest to them in the book.

Undergraduate Algebraic Geometry

Author: Miles Reid

Publisher: Cambridge University Press

ISBN: 9780521356626

Category: Mathematics

Page: 129

View: 3869

DOWNLOAD NOW »
This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time.

Topology and Geometry

Author: Glen E. Bredon

Publisher: Springer Science & Business Media

ISBN: 1475768486

Category: Mathematics

Page: 131

View: 8548

DOWNLOAD NOW »
This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS

An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

Publisher: OUP Oxford

ISBN: 0191663727

Category: Mathematics

Page: 320

View: 5278

DOWNLOAD NOW »
An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles. Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type. The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, a thorough treatment of Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields. Experts in the field will enjoy some of the new approaches to classical results. The text uses algebraic groups as the main examples, including worked out examples, instructive exercises, as well as bibliographical and historical remarks.

Deformation Theory

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1441915966

Category: Mathematics

Page: 234

View: 5913

DOWNLOAD NOW »
The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley.

Algebraic Geometry

Author: Solomon Lefschetz

Publisher: Courier Corporation

ISBN: 0486154726

Category: Mathematics

Page: 256

View: 8355

DOWNLOAD NOW »
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

Combinatorial Commutative Algebra

Author: Ezra Miller,Bernd Sturmfels

Publisher: Springer Science & Business Media

ISBN: 0387271031

Category: Mathematics

Page: 420

View: 7881

DOWNLOAD NOW »
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs

Ideals, Varieties, and Algorithms

An Introduction to Computational Algebraic Geometry and Commutative Algebra

Author: David A. Cox,John Little,Donal O'Shea

Publisher: Springer

ISBN: 3319167219

Category: Mathematics

Page: 646

View: 3504

DOWNLOAD NOW »
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of MapleTM, Mathematica® and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used. From the reviews of previous editions: “...The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. ...The book is well-written. ...The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.” —Peter Schenzel, zbMATH, 2007 “I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry.” —The American Mathematical Monthly

A Royal Road to Algebraic Geometry

Author: Audun Holme

Publisher: Springer Science & Business Media

ISBN: 9783642192258

Category: Mathematics

Page: 366

View: 2876

DOWNLOAD NOW »
This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!

Introduction to Algebraic Geometry

Author: Serge Lang

Publisher: N.A

ISBN: 9781614276272

Category: Literary Collections

Page: 274

View: 5025

DOWNLOAD NOW »
2014 Reprint of 1958 Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This book, an introduction to the Weil-Zariski algebraic geometry, is an amplification of lectures for one of a series of courses, given by various people, going back to Zariski. Restricted to qualitative algebraic geometry, it is an admirable introduction to Weil's "Foundations" and, more generally, the whole of the modern literature as it existed before the advent of sheaves.

Introduction to Algebraic Geometry

Author: Steven Dale Cutkosky

Publisher: American Mathematical Soc.

ISBN: 1470435187

Category: Geometry, Algebraic

Page: 484

View: 2992

DOWNLOAD NOW »
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.