## Using Algebraic Geometry

Author: David A. Cox,John Little,DONAL OSHEA

Publisher: Springer Science & Business Media

ISBN: 1475769113

Category: Mathematics

Page: 503

View: 824

An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.

## Commutative Algebra

With a View Toward Algebraic Geometry

Author: David Eisenbud,Professor David Eisenbud

Publisher: Springer Science & Business Media

ISBN: 9780387942698

Category: Mathematics

Page: 785

View: 6923

Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.

## Algebraic Geometry

A Concise Dictionary

Author: Elena Rubei

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110316234

Category: Mathematics

Page: 239

View: 2405

Algebraic geometry is one of the most classic subjects of university research in mathematics. It has a very complicated language that makes life very difficult for beginners. This book is a little dictionary of algebraic geometry: for every of the most common words in algebraic geometry, it contains its definition, several references and the statements of the main theorems about that term (without their proofs). Also some terms of other subjects, close to algebraic geometry, have been included. It was born to help beginners that know some basic facts of algebraic geometry, but not every basic fact, to follow seminars and to read papers, by providing them with basic definitions and statements. The form of a dictionary makes it very easy and quick to consult.

## Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 418

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

## An Invitation to Algebraic Geometry

Author: Karen E. Smith,Lauri Kahanpää,Pekka Kekäläinen,William Traves

Publisher: Springer Science & Business Media

ISBN: 1475744978

Category: Mathematics

Page: 164

View: 9231

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.

## Algorithmic and Quantitative Real Algebraic Geometry

DIMACS Workshop, Algorithmic and Quantitative Aspects of Real Algebraic, Geometry in Mathematics and Computer Science, March 12-16, 2001, DIMACS Center

Author: Saugata Basu,Laureano González-Vega

Publisher: American Mathematical Soc.

ISBN: 9780821871027

Category: Mathematics

Page: 219

View: 797

Algorithmic and quantitative aspects in real algebraic geometry are becoming increasingly important areas of research because of their roles in other areas of mathematics and computer science. The papers in this volume collectively span several different areas of current research. The articles are based on talks given at the DIMACS Workshop on ''Algorithmic and Quantitative Aspects of Real Algebraic Geometry''. Topics include deciding basic algebraic properties of real semi-algebraic sets, application of quantitative results in real algebraic geometry towards investigating the computational complexity of various problems, algorithmic and quantitative questions in real enumerative geometry, new approaches towards solving decision problems in semi-algebraic geometry, as well as computing algebraic certificates, and applications of real algebraic geometry to concrete problems arising in robotics and computer graphics. The book is intended for researchers interested in computational methods in algebra.

## Topics in Algebraic Geometry and Geometric Modeling

Workshop on Algebraic Geometry and Geometric Modeling, July 29-August 2, 2002, Vilnius University, Lithuania

Author: Ron Goldman,Rimvydas Krasauskas

Publisher: American Mathematical Soc.

ISBN: 0821834207

Category: Mathematics

Page: 366

View: 8832

Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture. The NSF sponsored the four-day ``Vilnius Workshop on Algebraic Geometry and Geometric Modeling'', which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, ``On the determination of the degree of an equation obtained by elimination'', which foreshadows the modern application of mixed volumes in algebraic geometry. The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.

## Poincarés Vermutung

die Geschichte eines mathematischen Abenteuers

Author: Donal O'Shea

Publisher: N.A

ISBN: 9783596176632

Category:

Page: 376

View: 9422

## Ebene algebraische Kurven

Author: Egbert Brieskorn,Horst Knörrer

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 964

View: 9453

## Algebraic Geometry

A First Course

Author: Joe Harris

Publisher: Springer Science & Business Media

ISBN: 1475721897

Category: Mathematics

Page: 330

View: 4873

"This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS

## An Introduction to Algebraic Geometry and Algebraic Groups

Author: Meinolf Geck

Publisher: Clarendon Press

ISBN: 0191663727

Category: Mathematics

Page: 320

View: 1694

An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles. Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type. The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, a thorough treatment of Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields. Experts in the field will enjoy some of the new approaches to classical results. The text uses algebraic groups as the main examples, including worked out examples, instructive exercises, as well as bibliographical and historical remarks.

## Moderne Algebra

Author: Bartel Eckmann L. Van der van der Waerden,Emil Artin,Emmy Noether

Publisher: Springer-Verlag

ISBN: 3662364344

Category: Mathematics

Page: 274

View: 6716

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

## Lineare Algebra

Eine Einführung für Studienanfänger

Author: Gerd Fischer

Publisher: Springer-Verlag

ISBN: 383489365X

Category: Mathematics

Page: 384

View: 1944

Das seit über 35 Jahren bewährte, einführende Lehrbuch im kompakten Taschenbuchformat mit einer umfassenden Stoffauswahl eignet sich als Grundlage für eine zweisemestrige Vorlesung für Studierende der Mathematik, Physik und Informatik. Der Text enthält zahlreiche Übungsaufgaben. Lösungen findet man in dem von H. Stoppel und B. Griese verfassten Übungsbuch. Zur Motivation der Studierenden enthält das Buch eine Einführung, in der die Bedeutung der Linearen Algebra als Grundlage innerhalb der Mathematik und ihren Anwendungen beschrieben wird.

## Elementare Algebraische Geometrie

Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen

Author: Klaus Hulek

Publisher: Springer-Verlag

ISBN: 3834823481

Category: Mathematics

Page: 194

View: 6941

Dieses Buch gibt eine Einführung in die Algebraische Geometrie. Ziel ist es, die grundlegenden Begriffe und Techniken der algebraischen Geometrie zusammen mit einer Reihe von Beispielen darzustellen.

Author: New Zealand Mathematical Society

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 6808

## Topics in Combinatorial Group Theory

Author: Gilbert Baumslag

Publisher: Springer Science & Business Media

ISBN: 9783764329211

Category: Mathematics

Page: 170

View: 8854

Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.

## Lehrbuch der Algebra

Mit lebendigen Beispielen, ausführlichen Erläuterungen und zahlreichen Bildern

Author: Gerd Fischer

Publisher: Springer-Verlag

ISBN: 3834894559

Category: Mathematics

Page: 404

View: 2774

Dieses ausführlich geschriebene Lehrbuch eignet sich als Begleittext zu einer einführenden Vorlesung über Algebra. Die Themenkreise sind Gruppen als Methode zum Studium von Symmetrien verschiedener Art, Ringe mit besonderem Gewicht auf Fragen der Teilbarkeit und schließlich als Schwerpunkt Körpererweiterungen und Galois-Theorie als Grundlage für die Lösung klassischer Probleme zur Berechnung der Nullstellen von Polynomen und zur Möglichkeit geometrischer Konstruktionen.

## The Geometry of Schemes

Author: David Eisenbud,Joe Harris

Publisher: Springer Science & Business Media

ISBN: 0387226397

Category: Mathematics

Page: 300

View: 1745

Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

## A Course on Rough Paths

With an Introduction to Regularity Structures

Author: Peter K. Friz,Martin Hairer

Publisher: N.A

ISBN: 9783319083339

Category:

Page: 268

View: 2754

## Algebraic Function Fields and Codes

Author: Henning Stichtenoth

Publisher: Springer Science & Business Media

ISBN: 3540768785

Category: Mathematics

Page: 360

View: 4799